SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang P, Zhang Y, Wang S, Li L, Li X. J. Adv. Transp. 2021; 2021: e6639559.

Copyright

(Copyright © 2021, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2021/6639559

PMID

unavailable

Abstract

In order to reduce driving risk in the rainfall days, developing the variable speed limits (VSL) is effective. However, it is hard to develop suitable VSL aligning with travel speed of mainstream that it affected by the traffic flow, rainfall intensity, individual travel speed, peak hours, working days, random events, and so on. In this paper, the average travel speed and traffic flow of each road section are calculated from the toll collection data of Xi'an Ring Road from May to July in 2018 in Shaanxi Province, China. The weather data are collected and extrapolated to the corresponding road sections. Travel speed, traffic flow, and rainfall intensity are integrated to predict the fluctuation trend of travel speed through the proposed deep belief-radial basis function network. The experimental results show that a significant decrease happens in the travel speed in the rainfall day during peak hours. Furthermore, the deep learning algorithm that considers more factors such as the rainfall intensity and traffic flow could improve the prediction accuracy. Then, a VSL method and an expressway risk coefficient evaluation method based on estimation of average travel speed are proposed. The experimental results show that the variable 85th percentile speed limit method proposed in this paper can reduce the risk of expressway driving. This can promote road safety in the development of intelligent transportation system (ITS) in future.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print