SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Toan TD, Truong VH. Transp. Res. Rec. 2021; 2675(4): 362-373.

Copyright

(Copyright © 2021, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198120980432

PMID

unavailable

Abstract

Short-term prediction of traffic flow is essential for the deployment of intelligent transportation systems. In this paper we present an efficient method for short-term traffic flow prediction using a Support Vector Machine (SVM) in comparison with baseline methods, including the historical average, the Current Time Based, and the Double Exponential Smoothing predictors. To demonstrate the efficiency and accuracy of the SVM method, we used one-month time-series traffic flow data on a segment of the Pan Island Expressway in Singapore for training and testing the model. The results show that the SVM method significantly outperforms the baseline methods for most prediction intervals, and under various traffic conditions, for the rolling horizon of 30 min. In investigating the effect of the input-data dimension on prediction accuracy, we found that the rolling horizon has a clear effect on the SVM's prediction accuracy: for the rolling horizon of 30-60 min, the longer the rolling horizon, the more accurate the SVM prediction is. To look for a solution for improvement of the SVM's training performance, we investigate the application of k-Nearest Neighbor method for SVM training using both actual data and simulated incident data. The results show that the k- Nearest Neighbor method facilitates a substantial reduction of SVM training size to accelerate the training without compromising predictive performance.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print