SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Adaimi G, Kreiss S, Alahi A. Transp. Res. C Emerg. Technol. 2021; 126: 103067.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.trc.2021.103067

PMID

unavailable

Abstract

Transportation systems often rely on understanding the flow of vehicles or pedestrian. From traffic monitoring at the city scale, to commuters in train terminals, recent progress in sensing technology make it possible to use cameras to better understand the demand, i.e., better track moving agents (e.g., vehicles and pedestrians). Whether the cameras are mounted on drones, vehicles, or fixed in the built environments, they inevitably remain scatter. We need to develop the technology to re-identify the same agents across images captured from non-overlapping field-of-views, referred to as the visual re-identification task. State-of-the-art methods learn a neural network based representation trained with the cross-entropy loss function. We argue that such loss function is not suited for the visual re-identification task hence propose to model confidence in the representation learning framework. We show the impact of our confidence-based learning framework with three methods: label smoothing, confidence penalty, and deep variational information bottleneck. They all show a boost in performance validating our claim. Our contribution is generic to any agent of interest, i.e., vehicles or pedestrians, and outperform highly specialized state-of-the-art methods across 6 datasets. The source code and models are shared towards an open science mission.


Language: en

Keywords

Flow monitoring; Person re-identification; Traffic monitoring; Vehicle re-identification

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print