SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Álvarez-García C, Cámara-Anguita S, López-Hens JM, Granero-Moya N, López-Franco MD, María-Comino-Sanz I, Sanz-Martos S, Pancorbo-Hidalgo PL. PLoS One 2021; 16(5): e0242947.

Copyright

(Copyright © 2021, Public Library of Science)

DOI

10.1371/journal.pone.0242947

PMID

unavailable

Abstract

The use of drones for triage in mass-casualty incidents has recently emerged as a promising technology. However, there is no triage system specifically adapted to a remote usage. Our study aimed to develop a remote triage procedure using drones. The research was performed in three stages: literature review, the development of a remote triage algorithm using drones and evaluation of the algorithm by experts. Qualitative synthesis and the calculation of content validity ratios were done to achieve the Aerial Remote Triage System. This algorithm assesses (in this order): major bleeding, walking, consciousness and signs of life; and then classify the injured people into several priority categories: priority 1 (red), priority 2 (yellow), priority 3 (green) and priority * (violet). It includes the possibility to indicate save-living interventions to injured people and bystanders, like the compression of bleeding injuries or the adoption of the recovery position. The Aerial Remote Triage System may be a useful way to perform triage by drone in complex emergencies when it is difficult to access to the scene due to physical, chemical or biological risks.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print