SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mohammadnazar A, Mahdinia I, Ahmad N, Khattak AJ, Liu J. Accid. Anal. Prev. 2021; ePub: ePub.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.aap.2021.106146

PMID

unavailable

Abstract

Safety Performance Functions (SPFs) are critical tools in the management of highway safety projects. SPFs are used to predict the average number of crashes per year at a location, such as a road segment or an intersection. The Highway Safety Manual (HSM) provides default safety performance functions (SPFs), but it is recommended that states in the U.S. develop jurisdiction-specific SPFs using local crash data. To do this for the state of Tennessee, crash and road inventory data were integrated for multi-lane rural highway segments for the years 2013-2017. In addition to developing SPFs similar to those contained in the HSM, this study applied a new methodology to capture variation in crashes in both space and time. Specifically, Geographically and Temporally Weighted Regression (GTWR) models for the localization of SPFs were developed. The new methodology incorporates temporal aspects of crashes in the models because the impact of a specific variable on crash frequency may vary over time due to several reasons.

RESULTS indicate that GTWR models remarkably outperform the traditional regression models by capturing spatio-temporal heterogeneity. Most parameter estimates were found to vary substantially across space and time. In other words, the association of contributing variables with the number of crashes can vary from one region or period of time to another. This finding weakens the idea of transferring default SPFs to other states and applying a single localized SPF to all regions of a state. Enabled by growing computational power, these results emphasize the importance of accounting for spatial and temporal heterogeneity and developing highly localized SPFs. The methodology of this study can be used by researchers to follow the temporal trend and location of critical factors to identify sites for safety improvements.


Language: en

Keywords

Geographically and temporally weighted regression; Negative binomial; Safety performance function; Spatio-temporal

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print