SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

van der Wall HEC, Doll RJ, van Westen GJP, Koopmans I, Zuiker RG, Burggraaf J, Cohen AF. Traffic Injury Prev. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Informa - Taylor and Francis Group)

DOI

10.1080/15389588.2021.1914837

PMID

unavailable

Abstract

OBJECTIVE: Sleep deprivation is known to affect driving behavior and may lead to serious car accidents similar to the effects from e.g., alcohol. In a previous study, we have demonstrated that the use of machine learning techniques allows adequate characterization of abnormal driving behavior after alprazolam and/or alcohol intake. In the present study, we extend this approach to sleep deprivation and test the model for characterization of new interventions. We aimed to classify abnormal driving behavior after sleep deprivation, and, by using a machine learning model, we tested if this model could also pick up abnormal driving behavior resulting from other interventions.

METHODS: Data were collected during a previous study, in which 24 subjects were tested after being sleep-deprived and after a well-rested night. Features were calculated from several driving parameters, such as the lateral position, speed of the car, and steering speed. In the present study, we used a gradient boosting model to classify sleep deprivation. The model was validated using a 5-fold cross validation technique. Next, probability scores were used to identify the overlap of driving behavior after sleep deprivation and driving behavior affected by other interventions. In the current study alprazolam, alcohol, and placebo are used to test/validate the approach.

RESULTS: The sleep deprivation model detected abnormal driving behavior in the simulator with an accuracy of 77 ± 9%. Abnormal driving behavior after alprazolam, and to a lesser extent also after alcohol intake, showed remarkably similar characteristics to sleep deprivation. The average probability score for alprazolam and alcohol measurements was 0.79, for alcohol 0.63, and for placebo only 0.27 and 0.30, matching the expected relative drowsiness.

CONCLUSION: We developed a model detecting abnormal driving induced by sleep deprivation. The model shows the similarities in driving characteristics between sleep deprivation and other interventions, i.e., alcohol and alprazolam. Consequently, our model for sleep deprivation may serve as a next reference point for a driving test battery of newly developed drugs.


Language: en

Keywords

Safety; automobile driving; machine learning; driving under the influence

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print