SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Perez-Rapela D, Forman JL, Huddleston SH, Crandall JR. Comput. Methods Biomech. Biomed. Eng. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Informa - Taylor and Francis Group)

DOI

10.1080/10255842.2020.1830380

PMID

unavailable

Abstract

The use of standardized anthropomorphic test devices and test conditions prevent current vehicle development and safety assessments from capturing the breadth of variability inherent in real-world occupant responses. This study introduces a methodology that overcomes these limitations by enabling the assessment of occupant response while accounting for sources of human- and non-human-related variability. Although the methodology is generic in nature, this study explores the methodology in its application to human response in far-side motor vehicle crashes as an example. A total of 405 human body model simulations were conducted in a mid-sized sedan vehicle environment to iteratively train two neural networks to predict occupant head excursion and thoracic injury as a function of occupant anthropometry, impact direction and restraint configuration. The neural networks were utilized in Monte Carlo simulations to calculate the probability of head-to-intruding-door impacts and thoracic AIS 3+ as a function of the restraint configuration. This analysis indicated that the vehicle used in this study would lead to a range of 667 to 2,448 head-to-intruding-door impacts and a range of 3,041 to 3,857 cases of thoracic AIS 3+ in the real world, depending on the seatbelt load limiter. These real-world results were later successfully validated using United States field data. This far-side assessment illustrates how the methodology incorporates the human and non-human variability, generates response surfaces that characterize the effects of the variability, and ultimately permits vehicle design considerations and injury predictions appropriate for real-world field conditions.


Language: en

Keywords

far-side impacts; human body models; Monte Carlo analysis; Response surface; vehicle safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print