SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen S, Xu K, Yao X, Zhu S, Zhang B, Zhou H, Guo X, Zhao B. Comput. Biol. Med. 2021; 133: e104413.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.compbiomed.2021.104413

PMID

unavailable

Abstract

Fatigue-induced human error is a leading cause of accidents. The purpose of this exploratory study in China was to perform field tests to measure fatigue psychophysiological parameters, such as electrocardiography (ECG), electromyography (EMG), pulse, blood pressure, reaction time and vital capacity (VC), in miners in high-altitude and cold areas and to perform multi-feature information fusion and fatigue identification. Forty-five miners were randomly selected as subjects for a field test, and feature signals were extracted from 90 psychophysiological features as basic signals for fatigue analysis. Fatigue sensitivity indices were obtained by Pearson correlation analysis, t-test and receiver operating characteristic (ROC) curve performance evaluation. The ECG time-domain, ECG frequency-domain, EMG, VC, systolic blood pressure (SBP), and pulse were significantly different after miner fatigue. The support vector machine (SVM) and random forest (RF) techniques were used to classify and identify fatigue by information fusion and factor combination. The optimal fatigue classification factors were ECG-FD (CV Accuracy = 85.0%) and EMG (CV Accuracy = 90.0%). The optimal combination of factors was ECG-TD + ECG-FD + EMG (CV accuracy = 80.0%). Furthermore, SVM machine learning had a good recognition effect. This study shows that SVM and RF can effectively identify miner fatigue based on fatigue-related factor combinations. ECG-FD and EMG are the best indicators of fatigue, and the best performance and robustness are obtained with three-factor combination classification. This study on miner fatigue identification provides a reference for research on clinical medicine and the identification of human fatigue under high-altitude, cold and low-oxygen conditions.


Language: en

Keywords

Machine learning; Electrocardiography (ECG); Electromyography (EMG); Fatigue recognition; Information fusion; Psychophysiological

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print