SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shangguan Q, Fu T, Wang J, Luo T, Fang S. Accid. Anal. Prev. 2021; 156: e106122.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.aap.2021.106122

PMID

unavailable

Abstract

Real-time driving risk status prediction is critical for developing proactive traffic intervention strategies and enhance driving safety. However, the optimal observation time window length and prediction time window length, which should be the prerequisite for the timeliness and accuracy of real-time driving risk status prediction model, have been rarely explored in previous studies. In this study, a methodology which integrates driving risk status identification, rolling time window-based feature extraction, real-time driving risk status prediction and driving risk influencing factors analysis was proposed to accurately evaluate and predict real-time driving risk status. The methodology was tested based on 1,440 car-following events from Shanghai Naturalistic Driving Study.

RESULTS show that four driving risk statuses (safe, low-risk, median-risk and high-risk) are most appropriate to establish risk labelling criteria. In addition, results from driving risk status prediction show that when the observation time window length is 0.5 s, the accuracy rate of predicting medium-risk or high-risk status occurring in the next 0.7 s is higher than 85 % using multi-layer perceptron model. Meanwhile, the results from the analysis of influencing factors show that the input variables related to the risk status score higher in the ranking of feature importance. A part from that, speed difference, headway distance, speed and acceleration are still important in predicting driving risk status. The proposed methods in this paper can be applied in connected and autonomous vehicle (CAV) to reduce driver cognitive workload and hence improve driving safety fed with naturalistic driving data collected using in-vehicle systems.


Language: en

Keywords

Car-following events; Driving risk status prediction; Machine learning algorithms; Naturalistic driving data; Rolling time window approach

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print