SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Watson C, Troynikov O, Kuklane K, Nawaz N. Int. J. Biometeorol. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, International Society of Biometeorology, Publisher Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00484-021-02130-z

PMID

unavailable

Abstract

Personal protective clothing (PPC) is critical for worker safety and wellbeing from both protection and thermal management perspectives, particularly as PPC typically covers more than 90% of the body. Research of PPC in low-risk categories such as mining, oil, gas, and construction and their thermal management attributes is limited, although these industries represent a significant proportion of the industrial workforce, work across a broad range of major industries, and frequently work in hot and/or humid thermal environments. This study evaluated and characterized the thermal management attributes of a selection of commercial low-level risk PPC ensembles currently used around the world as well as a civilian/corporate wear ensemble, using a sweating thermal manikin. The results demonstrate that there are substantially poorer thermal attributes for the PPC ensembles. Predicted Heat Strain Index (PHS) results for hot conditions reveal significantly lower duration limited exposure (DLE) and considerably greater body water loss for the wearers of PPC. Opportunities to substantially reduce PPC material mass and improve construction for these low-level risk categories in order to enhance thermal management performance are identified. Relationships between the thermal attributes of PPC and civilian clothing, and their garment construction, fit, and material characteristics are identified, providing new and important knowledge for current performance and direction for development of new improved PPC. This study provides researchers, developers, and garment designers with valuable insights for future improvement of PPC to create improved PPC for industrial workwear worn in hot environments.


Language: en

Keywords

Heat stress; Hot thermal environment; Industrial materials; Industrial workwear; Personal protective clothing; Thermal management

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print