SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xie DF, Gao ZY, Zhao XM. Int. J. Mod. Phys. C 2010; 21(12): 1443-1455.

Copyright

(Copyright © 2010, World Scientific)

DOI

10.1142/S0129183110015944

PMID

unavailable

Abstract

To depict the mixed traffic flow consisting of motorized (m-) and non-motorized (nm-) vehicles, a new cellular automaton model is proposed by combining the NaSch model and the BCA model, and some rules are also introduced to depict the interaction between m-vehicles and nm-vehicles. By numerical simulations, the flux-density relations are investigated in detail. It can be found that the flux-density curves of m-vehicle flow can be classified into two types, corresponding to small and large density regions of nm-vehicles, respectively. In small density region of nm-vehicles, the maximum flux as well as the critical density decreases with the increase of nm-vehicle density. Similar characteristics can also be found in large density region of nm-vehicles. However, compared with the former case, the maximum flux is much lower, the phase transition from free flow to congested flow becomes continuous and thus the corresponding critical points are nonexistent. The flux-density curves of nm-vehicle flow can also be classified into two types. And interestingly, the maximum flux and the corresponding density decrease first and keep constant later as the density of m-vehicle increases. Finally, the total transport capacity of the system is investigated. The results show that the maximum capacity can be reached at appropriate proportions for m-vehicles and nm-vehicles, which induces a controlling method to promote the capacity of mixed traffic flow.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print