SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jeon Y, Kim B, Baek Y. Sensors (Basel) 2021; 21(7).

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21072372

PMID

unavailable

Abstract

Drowsy driving is a major threat to the safety of drivers and road traffic. Accurate and reliable drowsy driving detection technology can reduce accidents caused by drowsy driving. In this study, we present a new method to detect drowsy driving with vehicle sensor data obtained from the steering wheel and pedal pressure. From our empirical study, we categorized drowsy driving into long-duration drowsy driving and short-duration drowsy driving. Furthermore, we propose an ensemble network model composed of convolution neural networks that can detect each type of drowsy driving. Each subnetwork is specialized to detect long- or short-duration drowsy driving using a fusion of features, obtained through time series analysis. To efficiently train the proposed network, we propose an imbalanced data-handling method that adjusts the ratio of normal driving data and drowsy driving data in the dataset by partially removing normal driving data. A dataset comprising 198.3 h of in-vehicle sensor data was acquired through a driving simulation that includes a variety of road environments such as urban environments and highways. The performance of the proposed model was evaluated with a dataset. This study achieved the detection of drowsy driving with an accuracy of up to 94.2%.


Language: en

Keywords

driver status monitoring; drowsy driving detection; ensemble CNN; intelligent vehicle; safety system

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print