SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sajjad M. Appl. Geogr. 2021; 126: e102367.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.apgeog.2020.102367

PMID

unavailable

Abstract

Building disaster-resilient communities require operative resilience frameworks enabling factual decision-making and resource allocation at national and sub-national scales. While Pakistan is frequently hit by several natural hazards (i.e., floods, droughts, earthquakes, and extreme heatwaves) resulting in devastating impacts, no national-level higher-resolution disaster resilience information is available to provide references for informed planning. Hence, this study provides a, first of its kind, multi-level comprehensive disaster resilience evaluation in Pakistan. To do so, data on a customized list of indicators within three key resilience sub-components (i.e., economic, institutional, and social) are acquired to compute a resilience index. Frequency distribution and the Analysis of Variance (ANOVA) methods are employed to analyse the differences between different resilience indices and a cross-regional assessment is carried out at the sub-national level. Subsequently, an extensive spatial assessment is performed using geo-information models (i.e., Global Moran's I, Local Indicators of Spatial Association, and machine learning-based multivariate clustering) to explore the global and local geographies of the resilience. Based on ANOVA, significant differences between the resilience sub-components are found (95% confidence). The geographical distribution of resilience scores ascertains a large spatial heterogeneity across the study area with the least resilient regions belonging to Sindh and Balochistan provinces (95% confidence). As shown by the machine learning-based multivariate clustering, the least resilient regions particularly lack in economic and institutional aspects of disaster resilience. The findings provide important references to ensure resilience management-related cross-regional equity and justice. The rigorous analyses regarding the geographies of disaster resilience in Pakistan are important to support the country's disaster risk reduction efforts. While the results are useful for practitioners, decision-makers, and professionals in the risk management field, the study has important policy-relevant implications in the context of disaster risk mitigation strategies.


Language: en

Keywords

Disaster risk reduction; Geospatial analysis; Machine learning; Natural hazards; Resilience mapping; Spatial statistical tools

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print