SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cao M, Luo Y, Wu Z, Mazzola C, Catania L, Alvarez TL, Halperin J, Biswal B, Li X. Brain Connect. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Mary Ann Liebert Publishers)

DOI

10.1089/brain.2020.0866

PMID

unavailable

Abstract

Traumatic brain injury (TBI)-induced attention deficits are among the most common long-term cognitive consequences in children. Most of the existing studies attempting to understand the neuropathological underpinnings of cognitive and behavioral impairments in TBI have utilized heterogeneous samples and resulted in inconsistent findings. The current research proposed to investigate topological properties of the structural brain network in children with TBI and their relationship with post-TBI attention problems in a more homogeneous subgroup of children who had severe post-TBI attention deficits (TBI-A). A total of 31 children with TBI-A and 35 group-matched controls were involved in the study. Diffusion tensor imaging-based probabilistic tractography and graph theoretical techniques were used to construct the structural brain network in each subject. Network topological properties were calculated in both global level and regional (nodal) level. Between-group comparisons among the topological network measures and analyses for searching brain-behavioral were all corrected for multiple comparisons using Bonferroni method. Compared to controls, the TBI-A group showed significantly higher nodal local efficiency and nodal clustering coefficient in left inferior frontal gyrus and right transverse temporal gyrus, while significantly lower nodal clustering coefficient in left supramarginal gyrus as well as lower nodal local efficiency in left parahippocampal gyrus. The temporal lobe topological alterations were significantly associated with the post-TBI inattentive and hyperactive symptoms in the TBI-A group. The results suggest that TBI-related structural re-modularity in the WM subnetworks associated with temporal lobe may play a critical role in the onset of severe post-TBI attention deficits in children. These findings provide valuable input for understanding the neurobiological substrates of TBI-A, and have the potential to serve as quantitatively measurable criteria guiding the development of more timely and tailored strategies for diagnoses and treatments to the affected individuals.


Language: en

Keywords

Traumatic brain injury; Attention; Graph theory; Brain networks; Diffusion tensor imaging (DTI)

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print