SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Steger S, Mair V, Kofler C, Pittore M, Zebisch M, Schneiderbauer S. Sci. Total Environ. 2021; 776: e145935.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2021.145935

PMID

unavailable

Abstract

Data-driven landslide susceptibility models formally integrate spatial landslide information with explanatory environmental variables that describe predisposing factors of slope instability. Well-performing models are commonly utilized to identify landslide-prone terrain or to understand the causes of slope instability. In most cases, however, the available landslide data is affected by spatial biases (e.g. underrepresentation of landslides far from infrastructure or in forests) and does therefore not perfectly represent the spatial distribution of past slope instabilities. Literature shows that implications of such data flaws are frequently ignored. This study was built upon landslide information that systematically relates to damage-causing and infrastructure-threatening events in South Tyrol, Italy (7400 km(2)). The created models represent three conceptually different strategies to deal with biased landslide information. The aims were to demonstrate why an inference of geomorphic causation from apparently well-performing models is invalid under common landslide data bias conditions (Model 1), to test a novel bias-adjustment approach (Model 2) and to exploit the underlying data bias to model areas likely affected by potentially damaging landslides (Model 3; intervention index), instead of landslide susceptibility. The study offers a novel perspective on how biases in landslide data can be considered within data-driven models by focusing not only on the process under investigation (landsliding), but also on the circumstances that led to the registration of landslide information (data collection effects). The results were evaluated in terms of statistical relationships, variable importance, predictive performance, and geomorphic plausibility. The results revealed that none of the models reflected landslide susceptibility. Despite partly high predictive performances, the models were unable to create geomorphically plausible spatial predictions. The impact-oriented intervention index, however, enabled to identify damage-causing landslides with high accuracy. We conclude that the frequent practice of inferring geomorphic causation from well-performing models without accounting for data limitations is invalid.


Language: en

Keywords

Validation; Generalized additive model; Landslide exposure; Landslide inventory; South Tyrol

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print