SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Quan R, Zhu L, Wu Y, Yang Y. IEEE Trans. Image Process. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TIP.2021.3058599

PMID

unavailable

Abstract

Accurate predictions of future pedestrian trajectory could prevent a considerable number of traffic injuries and improve pedestrian safety. It involves multiple sources of information and real-time interactions, e.g., vehicle speed and ego-motion, pedestrian intention and historical locations. Existing methods directly apply a simple concatenation operation to combine multiple cues while their dynamics over time are less studied. In this paper, we propose a novel Long Short-Term Memory (LSTM), namely Holistic LSTM, to incorporate multiple sources of information from pedestrians and vehicles adaptively. Different from LSTM, our Holistic LSTM considers mutual interactions and explores intrinsic relations among multiple cues. First, we introduce extra memory cells to improve the transferability of LSTMs in modeling future variations. These extra memory cells include a speed cell to explicitly model vehicle speed dynamics, an intention cell to dynamically analyze pedestrian crossing intentions and a correlation cell to exploit correlations among temporal frames. These three individual cells uncover the future movement of vehicles, pedestrians and global scenes. Second, we propose a gated shifting operation to learn the movement of pedestrians. The intention of crossing the road or not would significantly affect pedestrian's spatial locations. To this end, global scene dynamics and pedestrian intention information are leveraged to model the spatial shifts. Third, we integrate the speed variations to the output gate and dynamically reweight the output channels via the scaling of vehicle speed. The movement of the vehicle would alter the scale of the predicted pedestrian bounding box: as the vehicle gets closer to the pedestrian, the bounding box is enlarging. Our rescaling process captures the relative movement and updates the size of pedestrian bounding boxes accordingly. Experiments conducted on three pedestrian trajectory forecasting benchmarks show that our Holistic LSTM achieves state-of-the-art performance.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print