SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Grządziela A, Kluczyk M. Materials (Basel) 2021; 14(4): e772.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ma14040772

PMID

unavailable

Abstract

The technical requirements for naval ships machine foundations are far more strict in comparison to merchant's vessels. These requirements are confirmed in the military standardization of many countries. Underwater Explosion (UNDEX phenomena) detonation pulses, force naval engineers to design and implement different shock absorbers made from a wide variety of materials. This study presents the tests results of typical shock absorber designs made of various types of rubber and elastomers. The initial objective of the study was to determine the energy absorption of shock impacts, the choice of materials capable of operating within the temperature range of 0 °C to 70 °C, resistance to contact with oils and marine fuel, performance at frequencies ranging from 5 to 30,000 Hz, and absorption no less than 40% of harmonic vibration energy. Initial studies conducted on tensile testing machine were used to determine the static and dynamic stiffness of a shock absorbers. Considerations of stiffness coefficient for the linear and nonlinear range is typical for shock pulses. Further tests were carried out on a lightweight drop hammer to determine the characteristics of the damping coefficient for high-speed wave interactions-Shock Response Spectrum (SRS). The final aim of the study was to assess the repeatability of the shock absorbers response to multiple impact loads. Mechanical properties describing possibilities of tested dampers materials to absorb energy of UNDEX were also presented.


Language: en

Keywords

damping; shock absorbers; shock hammer; SRS; UNDEX

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print