SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Russo M, Maggio MG, Naro A, Portaro S, Porcari B, Balletta T, De Luca R, Raciti L, Calabrò RS. Int. J. Rehabil. Res. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Lippincott Williams and Wilkins)

DOI

10.1097/MRR.0000000000000459

PMID

unavailable

Abstract

Multiple sclerosis (MS) is a progressive neurologic disorder that can profoundly influence mobility, independence and quality of life. Gait dysfunction in MS is common, resulting in an increased risk of losing walking ability. Robotic exoskeletons have been developed to offer a new form of locomotor training. The aim of our study was to investigate the effectiveness of the powered exoskeleton (Ekso) in improving gait and balance in patients affected by MS. Twenty patients with MS (mean ± SD: age = 43.7 ± 10.3 years; 66.7% male) were enrolled in this retrospective study. They were divided into two groups, matched for demographic data (age and sex) and medical characteristics (disease duration and Expanded Disability Status Scale), but differing for the type of rehabilitation training performed. Group 1 [experimental group (EG)] received gait training with the Ekso device, whereas group 2 (control group) performed traditional gait training. Although both trainings led to a significant improvement in the ability to walk and balance, only in the EG a significant improvement in walking speed (10 Meter Walk test; P = 0.002), in person's mobility (Timed Up and Go test; P = 0.002), and in the perception of mental well-being (MSQoL-M; P = 0.004), with a good usability and acceptance of the device, was found. Powered exoskeletons could be considered a valuable tool to improve functional outcomes and get the therapeutic goal in patients with MS.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print