SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Oh YW, Park CH. Am. Behav. Sci. 2021; 65(2): 389-403.

Copyright

(Copyright © 2021, SAGE Publishing)

DOI

10.1177/0002764219878238

PMID

unavailable

Abstract

Humans are not very good at detecting deception. The problem is that there is currently no other particular way to distinguish fake opinions in a comments section than by resorting to poor human judgments. For years, most scholarly and industrial efforts have been directed at detecting fake consumer reviews of products or services. A technique for identifying deceptive opinions on social issues is largely underexplored and undeveloped. Inspired by the need for a reliable deceptive comment detection method, this study aims to develop an automated machine-learning technique capable of determining opinion trustworthiness in a comment section. In the process, we have created the first large-scale ground truth dataset consisting of 866 truthful and 869 deceptive comments on social issues. This is also one of the first attempts to detect comment deception in Asian languages (in Korean, specifically). The proposed machine-learning technique achieves nearly 81% accuracy in detecting untruthful opinions about social issues. This performance is quite consistent across issues and well beyond that of human judges.


Language: en

Keywords

deceptive comments; fake comments; machine learning; opinion spam

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print