SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Arvin R, Khattak AJ, Qi H. Accid. Anal. Prev. 2020; 151: e105949.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.aap.2020.105949

PMID

unavailable

Abstract

Transportation safety is highly correlated with driving behavior, especially human error playing a key role in a large portion of crashes. Modern instrumentation and computational resources allow for the monitorization of driver, vehicle, and roadway/environment to extract leading indicators of crashes from multi-dimensional data streams. To quantify variations that are beyond normal in driver behavior and vehicle kinematics, the concept of volatility is applied. The study measures driver-vehicle volatilities using the naturalistic driving data. By integrating and fusing multiple real-time streams of data, i.e., driver distraction, vehicular movements and kinematics, and instability in driving, this study aims to predict occurrence of safety critical events and generate appropriate feedback to drivers and surrounding vehicles. The naturalistic driving data is used which contains 7566 normal driving events, and 1315 severe events (i.e., crash and near-crash), vehicle kinematics, and driver behavior collected from more than 3500 drivers. In order to capture the local dependency and volatility in time-series data 1D-Convolutional Neural Network (1D-CNN), Long Short-Term Memory (LSTM), and 1DCNN-LSTM are applied. Vehicle kinematics, driving volatility, and impaired driving (in terms of distraction) are used as the input parameters. The results reveal that the 1DCNN-LSTM model provides the best performance, with 95.45% accuracy and prediction of 73.4% of crashes with a precision of 95.67%. Additional features are extracted with the CNN layers and temporal dependency between observations is addressed, which helps the network learn driving patterns and volatile behavior. The model can be used to monitor driving behavior in real-time and provide warnings and alerts to drivers in low-level automated vehicles, reducing their crash risk.


Language: en

Keywords

CNN; Volatility; Crash prediction; Big Data; Deep Learning; LSTM; Naturalistic driving study; Neural Network; SHRP2

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print