SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhu J, Li X, Jin P, Xu Q, Sun Z, Song X. Sensors (Basel) 2021; 21(1): e27.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21010027

PMID

unavailable

Abstract

As an effective means of solving collision problems caused by the limited perspective on board, the cooperative roadside system is gaining popularity. To improve the vehicle detection abilities in such online safety systems, in this paper, we propose a novel multi-sensor multi-level enhanced convolutional network model, called multi-sensor multi-level enhanced convolutional network architecture (MME-YOLO), with consideration of hybrid realistic scene of scales, illumination, and occlusion. MME-YOLO consists of two tightly coupled structures, i.e., the enhanced inference head and the LiDAR-Image composite module. More specifically, the enhanced inference head preliminarily equips the network with stronger inference abilities for redundant visual cues by attention-guided feature selection blocks and anchor-based/anchor-free ensemble head. Furthermore, the LiDAR-Image composite module cascades the multi-level feature maps from the LiDAR subnet to the image subnet, which strengthens the generalization of the detector in complex scenarios. Compared with YOLOv3, the enhanced inference head achieves a 5.83% and 4.88% mAP improvement on visual dataset LVSH and UA-DETRAC, respectively. Integrated with the composite module, the overall architecture gains 91.63% mAP in the collected Road-side Dataset. Experiments show that even under the abnormal lightings and the inconsistent scales at evening rush hours, the proposed MME-YOLO maintains reliable recognition accuracy and robust detection performance.


Language: en

Keywords

complex scenes; multi-scales; multi-sensor fusion; smart city; vehicle detection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print