SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li P, Abdel-Aty M, Yuan J. Accid. Anal. Prev. 2020; 150: e105924.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.aap.2020.105924

PMID

33340804

Abstract

Pedestrian and bicycle safety is a key component in traffic safety studies. Various studies were conducted to address pedestrian and bicycle safety issues for intersections, road segments, etc. However, only a few studies investigated pedestrian and bicycle safety for bus stops, which usually have a relatively larger volume of pedestrians and bicyclists. Moreover, traditional reactive safety approaches require a significant number of historical crashes, while pedestrian and bicycle crashes are usually rare events. Alternatively, surrogate safety measures could proactively evaluate traffic safety status when crash data are rare or unavailable. This paper utilized critical bus driving events extracted from GPS trajectory data as pedestrian and bicycle surrogate safety measures for bus stops. A city-wide trajectory data from Orlando, Florida was used, which contains around 300 buses, 6,700,000 GPS records, and 1300 bus stops. Three critical driving events were identified based on the buses' acceleration rates and stop time; hard acceleration, hard deceleration, and long stop. The relationships between critical driving events and crashes were examined using Spearman's rank correlation coefficient. All three events were positively correlated with pedestrian and bicycle crashes. Long stop event has the highest correlation coefficient, followed by hard acceleration and hard deceleration. A Bayesian negative binomial model incorporating spatial correlation (Bayesian NB-CAR) was built to estimate the pedestrian and bicycle crash frequency using the generated events. The results were consistent with the correlation estimation. For example, hard acceleration and long stop events were both positively related to pedestrian and bicycle crashes. Moreover, model evaluation results indicated that the proposed Bayesian NB-CAR outperformed the standard Bayesian negative binomial model with lower Watanabe-Akaike Information Criterion (WAIC) and Deviance Information Criteria (DIC) values. In conclusion, this paper suggests the use of critical bus driving events as surrogate safety measures for pedestrian and bicycle crashes, which could be implemented in a proactive traffic safety management system.


Language: en

Keywords

GPS data; Pedestrian and bicycle safety; Spatial correlation; Surrogate safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print