SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wu Y, Deng L, He W. Sensors (Basel) 2020; 20(24): e7170.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s20247170

PMID

33327614

Abstract

Traffic loading monitoring plays an important role in bridge structural health monitoring, which is helpful in overloading detection, transportation management, and safety evaluation of transportation infrastructures. Bridge weigh-in-motion (BWIM) is a method that treats traffic loading monitoring as an inverse problem, which identifies the traffic loads of the target bridge by analyzing its dynamic strain responses. To achieve accurate prediction of vehicle loads, the configuration of axles and vehicle velocity must be obtained in advance, which is conventionally acquired via additional axle-detecting sensors. However, problems arise from additional sensors such as fragile stability or expensive maintenance costs, which might plague the implementation of BWIM systems in practice. Although data-driven methods such as neural networks can estimate traffic loadings using only strain sensors, the weight data of vehicles crossing the bridge is difficult to obtain. In order to overcome these limitations, a modified encoder-decoder architecture grafted with signal-reconstruction layer is proposed in this paper to identify the properties of moving vehicles (i.e., velocity, wheelbase, and axle weight) using merely the bridge dynamic response. Encoder-decoder is an unsupervised method extracting higher features from original data. The numerical bridge model based on vehicle-bridge coupling vibration theory is established to illustrate the applicability of this new encoder-decoder method. The identification results demonstrate that the proposed approach can predict traffic loadings without using additional sensors and without requiring vehicle weight labels. Parametric studies also show that this new approach achieves better stability and reliability in identifying the properties of moving vehicles, even under the circumstances of large data pollution.


Language: en

Keywords

convolutional neural network; bridge weigh-in-motion (BWIM); inverse problem; structural health monitoring (SHM)

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print