SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang H, Guo Y, Chen Y, Sun Q, Wang C. Int. J. Environ. Res. Public Health 2020; 17(24): e9247.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph17249247

PMID

33321945

Abstract

Numerous traffic crashes occur every year on zebra crossings in China. Pedestrians are vulnerable road users who are usually injured severely or fatally during human-vehicle collisions. The development of an effective pedestrian street-crossing decision-making model is essential to improving pedestrian street-crossing safety. For this purpose, this paper carried out a naturalistic field experiment to collect a large number of vehicle and pedestrian motion data. Through interviewed with many pedestrians, it is found that they pay more attention to whether the driver can safely brake the vehicle before reaching the zebra crossing. Therefore, this work established a novel decision-making model based on the vehicle deceleration-safety gap (VD-SGM). The deceleration threshold of VD-SGM was determined based on signal detection theory (SDT). To verify the performance of VD-SGM proposed in this work, the model was compared with the Raff model. The results show that the VD-SGM performs better and the false alarm rate is lower. The VD-SGM proposed in this work is of great significance to improve pedestrians' safety. Meanwhile, the model can also increase the efficiency of autonomous vehicles.


Language: en

Keywords

pedestrian; autonomous vehicles; decision-making model; signal detection theory; vehicle deceleration; zebra crossings

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print