SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Whife CJ, Vallence AM, Edgar DW, Wood FM. Burns 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.burns.2020.10.024

PMID

33288329

Abstract

OBJECTIVE: Neuroplasticity is the capacity of the brain to change or adapt with experience: brain changes occur with use, disuse, and injury. Repetitive transcranial magnetic stimulation (rTMS) can be used to induce neuroplasticity in the human brain. Here, we examined rTMS-induced neuroplasticity in the primary motor cortex in burns survivors and controls without injury, and whether neuroplasticity is associated with functional recovery in burns survivors.

METHODS: Sixteen burn injury survivors (total body surface area of burn injury <15%) and 13 non-injured control participants were tested. Repetitive TMS (specifically, spaced continuous theta-burst stimulation[cTBS]) was applied to induce neuroplasticity 6 and 12 weeks after injury in burn survivors and in two sessions separated by 6 weeks in controls. Motor evoked potentials (MEPs) elicited by single-pulse TMS were measured before and after rTMS to measure neuroplasticity. Burns survivors completed a functional assessment 12 weeks after injury.

RESULTS: Non-injured controls showed decreased MEP amplitude 15-30 min after spaced cTBS in both experimental sessions. Burn survivors showed a smaller change in MEP amplitude after spaced cTBS compared to controls 6 weeks after burn injury but no difference compared to controls 12 weeks after burn injury. In burn survivors, there was a significant positive association between general health outcome (Short-Form Health Survey) and the change in MEP amplitude after spaced cTBS 12 weeks after injury (r=.73, p =.01).

CONCLUSIONS: The current findings suggest that burn survivors have a reduced capacity for neuroplasticity early in the recovery period (6 weeks after injury), which normalizes later in the recovery period (12 weeks after injury). Furthermore, the results provide preliminary evidence to suggest that burn survivors with normalized neuroplasticity 12 weeks after injury recover faster after burn injury.


Language: en

Keywords

Burn injury; Neuroplasticity; Primary motor cortex; Transcranial magnetic stimulation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print