SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yao H, Rashidian S, Dong X, Duanmu H, Rosenthal RN, Wang F. J. Med. Internet. Res. 2020; 22(11): e15293.

Copyright

(Copyright © 2020, Centre for Global eHealth Innovation)

DOI

10.2196/15293

PMID

33245287

Abstract

BACKGROUND: In recent years, both suicide and overdose rates have been increasing. Many individuals who struggle with opioid use disorder are prone to suicidal ideation; this may often result in overdose. However, these fatal overdoses are difficult to classify as intentional or unintentional. Intentional overdose is difficult to detect, partially due to the lack of predictors and social stigmas that push individuals away from seeking help. These individuals may instead use web-based means to articulate their concerns.

OBJECTIVE: This study aimed to extract posts of suicidality among opioid users on Reddit using machine learning methods. The performance of the models is derivative of the data purity, and the results will help us to better understand the rationale of these users, providing new insights into individuals who are part of the opioid epidemic.

METHODS: Reddit posts between June 2017 and June 2018 were collected from r/suicidewatch, r/depression, a set of opioid-related subreddits, and a control subreddit set. We first classified suicidal versus nonsuicidal languages and then classified users with opioid usage versus those without opioid usage. Several traditional baselines and neural network (NN) text classifiers were trained using subreddit names as the labels and combinations of semantic inputs. We then attempted to extract out-of-sample data belonging to the intersection of suicide ideation and opioid abuse. Amazon Mechanical Turk was used to provide labels for the out-of-sample data.

RESULTS: Classification results were at least 90% across all models for at least one combination of input; the best classifier was convolutional neural network, which obtained an F1 score of 96.6%. When predicting out-of-sample data for posts containing both suicidal ideation and signs of opioid addiction, NN classifiers produced more false positives and traditional methods produced more false negatives, which is less desirable for predicting suicidal sentiments.

CONCLUSIONS: Opioid abuse is linked to the risk of unintentional overdose and suicide risk. Social media platforms such as Reddit contain metadata that can aid machine learning and provide information at a personal level that cannot be obtained elsewhere. We demonstrate that it is possible to use NNs as a tool to predict an out-of-sample target with a model built from data sets labeled by characteristics we wish to distinguish in the out-of-sample target.


Language: en

Keywords

social media; suicide; deep learning; machine learning; natural language processing; opioid epidemic; opioid-related disorders

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print