SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hostetler ZS, Hsu FC, Yoganandan N, Pintar FA, Banerjee A, Voo L, Gayzik FS. Ann. Biomed. Eng. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10439-020-02686-8

PMID

33219439

Abstract

Many injury metrics are routinely proposed from measured or derived quantities from biomechanical experiments using post mortem human subjects (PMHS). The existing literature did not provide guidance on deciding between parameters collected in an experiment that would be best to use for the development of human injury probability curves (HIPC). The objective of this study was to use the Brier Metric Score (BMS) to identify the most appropriate metric from an experiment that predicts injury outcomes. The Brier Metric Score assesses how well a metric predicts the outcome for a censored data point (a lower BMS is better). Survival analysis was then conducted with the selected metric and the best distribution was selected using Akaike information criterion (AIC). Confidence intervals (CIs) and the normalized confidence interval width (NCIS) were calculated for the injury probability curve. The testing and validation of the methods described were performed using biomechanics data in the open literature. The methods for the HIPC development procedure detailed herein have been rigorously tested and used in the generation of WIAMan HIPCs and Injury Assessment Reference Curves (IARCs) for the WIAMan ATD, but can also be used in other ATD or PMHS injury risk curve development.


Language: en

Keywords

Military; Brier Metric Score; Injury biomechanics; Injury probability curve; Survival analysis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print