SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Swenson A, Miller L, Urban J, Stitzel J. Neurology 2020; 95(Suppl 1): S1.

Copyright

(Copyright © 2020, Lippincott Williams and Wilkins)

DOI

10.1212/WNL.0000000000011045

PMID

33199543

Abstract

OBJECTIVE: The objective of this pilot study was to characterize head impact exposure in a sample of youth boys' ice hockey using a novel instrumented mouthpiece, improving accuracy.

BACKGROUND: From 2010 to 2018 youth ice hockey saw a 15% increase in participation, despite growing concerns for concussion risk in contact sports. While contact sports with similar rates of concussion have been subjected to rigorous study, head impact exposure in youth ice hockey has been largely underexplored. Existing youth studies have utilized helmet-mounted sensors, which are associated with error due to poor coupling with the skull.

DESIGN/METHODS: Custom mouthpieces containing a tri-axial accelerometer and gyroscope were fit to seven enrolled athletes, and monitored during practices and games throughout the season. Linear acceleration and rotational velocity of the head were recorded for 60 ms when 5 g was exceeded on any axis for at least 3 ms. Time-synchronized film was reviewed to identify the contact scenario and head contact. Summary statistics of kinematics were calculated by scenario and presence of head contact.

RESULTS: A total of 465 events were recorded over 25 weeks. Of these events 25% involved head contact; 92% of all contact scenarios were board checks, falls, or ice checks. Events involving head contact (i.e., head impacts) had median [95th percentile] peak linear acceleration, rotational velocity, and angular acceleration of 8.1 [30.9] g, 7.9 [20.2] rad/s, and 614 [2673] rad/s2, respectively. Events not involving head contact had median [95th percentile] peak linear acceleration, rotational velocity, and angular acceleration of 6.6 [43.8] g, 6.5 [17.5] rad/s, and 455 [4115] rad/s2, respectively.

CONCLUSIONS: The majority of the recorded events could be classified as board checks, falls, or ice checks. Median peak kinematics were higher for head impacts than non-head impact events. In contrast, 95th percentile linear and angular accelerations were greater for impacts not involving head contact.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print