SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Thompson DK, Schroeder D, Wilkinson SL, Barber Q, Baxter G, Cameron H, Hsieh R, Marshall G, Moore B, Refai R, Rodell C, Schiks T, Verkaik GJ, Zerb J. Fire (Basel) 2020; 3(3): e28.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire3030028

PMID

unavailable

Abstract

A 3.6 ha experimental fire was conducted in a black spruce peatland forest that had undergone thinning the year prior. After 50 m of spread in a natural stand at 35–60 m min−1, the crown fire (43,000 kW m−1 intensity using Byram’s method) encountered the 50% stem removal treatment; spread rates in the treatment were 50–60 m min−1. Fuel consumption in the control (2.75 kg m−2) was comparable to the treatment (2.35 kg m−2). Proxy measurements of fire intensity using in-stand heat flux sensors as well as photogrammetric flame heights had detected intensity reductions to 30–40% of the control. Crown fuel load reductions (compensated by higher surface fuel load) appear to be the most significant contributor to the decline in intensity, despite drier surface fuels in the treatment. The burn depth of 5 cm in moss and organic soil did not differ between control and treatment. These observations point to the limited effectiveness (likely reductions in crown fire intensity but not spread rate) of stem removal in boreal black spruce fuel types with high stem density, low crown base height and high surface fuel load. The observed fire behaviour impacts differ from drier conifer forests across North America.


Language: en

Keywords

black spruce; boreal; crown fire; fire behaviour; fuel treatment; thinning

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print