SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gannon BM, Wei Y, Thompson MP. Fire (Basel) 2020; 3(3): e45.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire3030045

PMID

unavailable

Abstract

In many fire-prone watersheds, wildfire threatens surface drinking water sources with eroded contaminants. We evaluated the potential to mitigate the risk of degraded water quality by limiting fire sizes and contaminant loads with a containment network of manager-developed Potential fire Operational Delineations (PODs) using wildfire risk transmission methods to partition the effects of stochastically simulated wildfires to within and out of POD burning. We assessed water impacts with two metrics—total sediment load and frequency of exceeding turbidity limits for treatment—using a linked fire-erosion-sediment transport model. We found that improved fire containment could reduce wildfire risk to the water source by 13.0 to 55.3% depending on impact measure and post-fire rainfall. Containment based on PODs had greater potential in our study system to reduce total sediment load than it did to avoid degraded water quality. After containment, most turbidity exceedances originated from less than 20% of the PODs, suggesting strategic investments to further compartmentalize these areas could improve the effectiveness of the containment network. Similarly, risk transmission varied across the POD boundaries, indicating that efforts to increase containment probability with fuels reduction would have a disproportionate effect if prioritized along high transmission boundaries.


Language: en

Keywords

erosion; Monte Carlo simulation; Potential fire Operational Delineations; transmission risk; water supply; wildfire containment

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print