SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Miller EA. Fire (Basel) 2020; 3(2): e23.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire3020023

PMID

unavailable

Abstract

The Drought Code (DC) was developed as part of the Canadian Forest Fire Weather Index System in the early 1970s to represent a deep column of soil that dries relatively slowly. Unlike most other fire danger indices or codes that operate on gravimetric moisture content and use the logarithmic drying equation to represent diffusion, the DC is based on a model that balances daily precipitation and evaporation. This conceptually simple water balance model was ultimately implemented using a “shortcut” equation that facilitated ledgering by hand but also mixed the water balance model with the abstraction equation, obscuring the logic of the model and concealing two important variables. An alternative interpretation of the DC is presented that returns the algorithm to an equivalent but conceptual form that offers several advantages: The simplicity of the underlying water balance model is retained with fewer variables, constants, and equations. Two key variables, daily depth of water storage and actual evaporation, are exposed. The English system of units is eliminated and two terms associated with precipitation are no longer needed. The reduced model does not include or depend on any soil attributes, confirming that the nature of the “DC equivalent soil” cannot be precisely known. While the “Conceptual Algorithm” presented here makes it easier to interpret and understand the logic of the DC, users may continue to use the equivalent “Implemented Algorithm” operationally if they wish.


Language: en

Keywords

boreal forest; Canadian Forest Fire Danger Rating System; forest floor; fuel moisture content; Soil Moisture Index; water balance model

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print