SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Saha S, Arabameri A, Saha A, Blaschke T, Ngo PTT, Nhu VH, Band SS. Sci. Total Environ. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2020.142928

PMID

33127137

Abstract

The present research examines the landslide susceptibility in Rudraprayag district of Uttarakhand, India using the conditional probability (CP) statistical technique, the boost regression tree (BRT) machine learning algorithm, and the CP-BRT ensemble approach to improve the accuracy of the BRT model. Using the four fold of data, the models' outcomes were cross-checked. The locations of existing landslides were detected by general field surveys and relevant records. 220 previous landslide locations were obtained, presented as an inventory map, and divided into four folds to calibrate and authenticate the models. For modelling the landslide susceptibility, twelve LCFs (landslide conditioning factors) were used. Two statistical methods, i.e. the mean absolute error (MAE) and the root mean square error (RMSE), one statistical test, i.e. the Freidman rank test, as well as the receiver operating characteristic (ROC), efficiency and precision were used for authenticating the produced landslide models. The results of the accuracy measures revealed that all models have good potential to recognize the landslide susceptibility in the Garhwal Himalayan region. Among these models, the ensemble model achieved a higher accuracy (precision: 0.829, efficiency: 0.833, AUC: 89.460, RMSE: 0.069 and MAE: 0.141) than the individual models. According to the outcome of the ensemble simulations, the BRT model's predictive accuracy was enhanced by integrating it with the statistical model (CP). The study showed that the areas of fallow land, plantation fields, and roadsides with elevations of more than 1500 m. with steep slopes of 24° to 87° and eroding hills are highly susceptible to landslides. The findings of this work could help in minimizing the landslides' risk in the Western Himalaya and its adjoining areas with similar landscapes and geological characteristics.


Language: en

Keywords

Boost regression tree (BRT); Conditional probability (CP); Ensemble method; Landslide susceptibility; Rudraprayag

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print