SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rozek DC, Andres WC, Smith NB, Leifker FR, Arne K, Jennings G, Dartnell N, Bryan CJ, Rudd MD. Psychiatry Res. 2020; 294: e113515.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.psychres.2020.113515

PMID

33113452

Abstract

Identifying predictors of suicide attempts is critical in intervention and prevention efforts, yet finding predictors has proven difficult due to the low base rate and underpowered statistical approaches. The objective of the current study was to use machine learning to examine predictors of suicidal behaviors among high-risk suicidal Soldiers who received outpatient mental health services in a randomized controlled trial of Brief Cognitive Behavioral Therapy for Suicide Prevention (BCBT) compared to treatment as usual (TAU). Self-report measures of clinical and demographic variables, administered prior to the start of outpatient treatment to 152 participants with recent suicidal thoughts and/or behaviors were analyzed using machine learning software to identify the best combination of variables for predicting suicide attempts during or after treatment. Worst-point suicidal ideation, history of multiple suicide attempts, treatment group (i.e., BCBT or TAU), suicidogenic cognitions, and male sex were found, in combination, correctly classified 30.8% of patients who attempted suicide during the two-year follow-up period. This combination has higher sensitivity than many models that have previously been used to predict suicidal behavior. Overall, this study provides a combination of variables that can be assessed clinical to help identify high-risk suicidal individuals.


Language: en

Keywords

Suicide; prediction; military; machine learning; Army

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print