SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Carrión E, Saez PI, Pomares JC, González A. Int. J. Environ. Res. Public Health 2020; 17(20): e7647.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph17207647

PMID

33092167

Abstract

Energy-absorbing lanyards (EAL) are part of fall arrest systems (FAS), their main mission is to dissipate the energy generated during the fall, ensuring that the arresting force does not cause injury to the user. For the design of FAS as set out in the American standard Z359.6 and the Canadian Z259.16 it is essential to know the deployment force or average arrest force (Fa). Fa is necessary to estimate the elongation that the absorber will suffer during the fall and therefore essential data to calculate the clearance distance. There is a lack of useful experimental data for the design of this personal protective equipment (PPE). This work provides empirical data required for the design of FAS with EAL in accordance with EN 355. This paper covers different types of EAL that are marketed internationally; different empirical data, average and maximum forces, required for improving safety design are researched. Six manufacturers, 10 models, and 2 samples of each model were selected, with total of 20 tests being performed. Dynamic performance tests were carried out, the free fall of a person was simulated using a 100 kg steel ballast from the maximum height allowed by the equipment, obtaining the maximum arrest force (Fm), average deployment force (Fa), and, by calculating the balance of forces, the maximum and average acceleration suffered by the ballast during its arrest. In light of the results, relevant conclusions for user safety are obtained. It is feasible to raise the safety requirements established by the different standards. The Fm can be established below 6 kN in the EAL, and the Fa can be estimated at 87.5% of the Fm. The categorization of the force-time curve in fall arrest with EAL has been obtained. Two EAL purchased on the market exceed the Fm permitted, therefore it is recommended to increase the quality controls of EAL.


Language: en

Keywords

arrest force; dynamic performance test; energy absorber lanyard; fall arrest systems

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print