SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gabler LF, Huddleston SH, Dau NZ, Lessley DJ, Arbogast KB, Thompson X, Resch JE, Crandall JR. Ann. Biomed. Eng. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10439-020-02654-2

PMID

33078368

Abstract

Wearable sensors that accurately record head impacts experienced by athletes during play can enable a wide range of potential applications including equipment improvements, player education, and rule changes. One challenge for wearable systems is their ability to discriminate head impacts from recorded spurious signals. This study describes the development and evaluation of a head impact detection system consisting of a mouthguard sensor and machine learning model for distinguishing head impacts from spurious events in football games. Twenty-one collegiate football athletes participating in 11 games during the 2018 and 2019 seasons wore a custom-fit mouthguard instrumented with linear and angular accelerometers to collect kinematic data. Video was reviewed to classify sensor events, collected from instrumented players that sustained head impacts, as head impacts or spurious events. Data from 2018 games were used to train the ML model to classify head impacts using kinematic data features (127 head impacts; 305 non-head impacts). Performance of the mouthguard sensor and ML model were evaluated using an independent test dataset of 3 games from 2019 (58 head impacts; 74 non-head impacts). Based on the test dataset results, the mouthguard sensor alone detected 81.6% of video-confirmed head impacts while the ML classifier provided 98.3% precision and 100% recall, resulting in an overall head impact detection system that achieved 98.3% precision and 81.6% recall.


Language: en

Keywords

Machine learning; Concussion; American football; Feature engineering; Head kinematics; Instrumented mouthguard; On-field impacts

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print