SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen XZ, Chang CM, Yu CW, Chen YL. Sensors (Basel) 2020; 20(20): e5731.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s20205731

PMID

33050173

Abstract

Numerous vehicle detection methods have been proposed to obtain trustworthy traffic data for the development of intelligent traffic systems. Most of these methods perform sufficiently well under common scenarios, such as sunny or cloudy days; however, the detection accuracy drastically decreases under various bad weather conditions, such as rainy days or days with glare, which normally happens during sunset. This study proposes a vehicle detection system with a visibility complementation module that improves detection accuracy under various bad weather conditions. Furthermore, the proposed system can be implemented without retraining the deep learning models for object detection under different weather conditions. The complementation of the visibility was obtained through the use of a dark channel prior and a convolutional encoder-decoder deep learning network with dual residual blocks to resolve different effects from different bad weather conditions. We validated our system on multiple surveillance videos by detecting vehicles with the You Only Look Once (YOLOv3) deep learning model and demonstrated that the computational time of our system could reach 30 fps on average; moreover, the accuracy increased not only by nearly 5% under low-contrast scene conditions but also 50% under rainy scene conditions. The results of our demonstrations indicate that our approach is able to detect vehicles under various bad weather conditions without the need to retrain a new model.


Language: en

Keywords

intelligent traffic system; various bad weather conditions; vehicle detection system

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print