SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shen C, Zhang S, Gao Z, Zhou B, Su W, Hu H. J. Adv. Transp. 2020; 2020: e9405760.

Copyright

(Copyright © 2020, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2020/9405760

PMID

unavailable

Abstract

With the development of intelligent vehicle technology, the demand for advanced driver assistant systems kept increasing. To improve the performance of the active safety systems, we focused on right-turning vehicle's collision warning and avoidance. We put forward an algorithm based on Monte Carlo simulation to calculate the collision probability between the right-turning vehicle and another vehicle (or pedestrian) in intersections. We drew collision probability curves which used time-to-collision as the horizontal axis and collision probability as the vertical axis. We established a three-level collision warning system and used software to calculate and simulate the collision probability and warning process. To avoid the collision actively when turning right, a two-stage braking strategy is applied. Taking four right-turning collision conditions as examples, the two-stage braking strategy was applied, analysing and comparing the anteroposterior curve diagram simultaneously to avoid collision actively and reduce collision probability. By comparison, the collision probability 2 s before active collision avoidance was more than 80% and the collision probability may even reach 100% in certain conditions. To improve the active safety performance, the two-stage braking strategy can reduce the collision probability from exceeding 50% to approaching 0% in 2 s and reduce collision probability to less than 5% in 3 s. By changing four initial positions, the collision probability curve calculation algorithm and the two-stage braking strategy are validated and analysed. The results verified the rationality of the collision probability curve calculation algorithm and the two-stage braking strategy.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print