SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chang H, Yoon B. J. Adv. Transp. 2020; 2020: e3610923.

Copyright

(Copyright © 2020, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2020/3610923

PMID

unavailable

Abstract

The near-future deployment of high-level automation vehicles (AVs) can render promising opportunities to solve ongoing hindrances in modern safety-related research. Monitoring fatigued drivers on any road section is one of these challenges. Vehicle trajectory big data, monitored through AVs, include key information with which to monitor fatigued drivers on roads. To mine this upcoming opportunity, a new data-driven approach which allows the direct monitoring of fatigued drivers on road segments is proposed here for the first time. A feasible study was conducted using big vehicle trajectory data and real-life traffic accident data. The results showed that fatigued drivers on a target road section can be successfully surveyed using the driving durations from departure locations to the target road section. It was found that, with a statistical correlation of 0.90, an index for fatigued drivers has strong explanatory power about the traffic accident rate. This finding indicates that the proposed method will be a promising means by which to monitor fatigued drivers at road locations in the upcoming era of autonomous vehicles. In addition, the method is immediately practicable if vehicle trajectory data are available.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print