SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lin C, Wu D, Liu H, Xia X, Bhattarai N. Appl. Sci. (Basel) 2020; 10(5): e1675.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/app10051675

PMID

unavailable

Abstract

Crashes among young and inexperienced drives are a major safety problem in the United States, especially in an area with large rural road networks, such as West Texas. Rural roads present many unique safety concerns that are not fully explored. This study presents a complete machine leaning pipeline to find the patterns of crashes involved with teen drivers no older than 20 on rural roads in West Texas, identify factors that affect injury levels, and build four machine learning predictive models on crash severity. The analysis indicates that the major causes of teen driver crashes in West Texas are teen drivers who failed to control speed or travel at an unsafe speed when they merged from rural roads to highways or approached intersections. They also failed to yield on the undivided roads with four or more lanes, leading to serious injuries. Road class, speed limit, and the first harmful event are the top three factors affecting crash severity. The predictive machine learning model, based on Label Encoder and XGBoost, seems the best option when considering both accuracy and computational cost. The results of this work should be useful to improve rural teen driver traffic safety in West Texas and other rural areas with similar issues.


Keywords: Social Transition


Language: en

Keywords

crash severity; machine learning; rural roads; teen driver

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print