SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wijerathna TM, Mohamed F, Gawarammana IB, Wunnapuk K, Dissanayake DM, Shihana F, Buckley NA. Environ. Toxicol. Pharmacol. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.etap.2020.103510

PMID

33031936

Abstract

Previous studies on human acute kidney injury (AKI) following poisoning with potassium permanganate/oxalic acid (KMnO4/H2C2O4), paraquat, and glyphosate surfactant herbicide (GPSH) have shown rapid and large increases in serum creatinine (sCr) that cannot be entirely explained by direct nephrotoxicity. One plausible mechanism for a rapid increase in sCr is oxidative stress. Thus, we aimed to explore biomarkers of oxidative stress, cellular injury, and their relationship with sCr, after acute KMnO4/H2C2O4, paraquat, and GPSH poisonings. Serum biomarkers [sCr, creatine (sCn), cystatin C (sCysC)] and urinary biomarkers [cytochrome C (CytoC), 8-isoprostane (8-IsoPs)] were evaluated in 105 patients [H2C2O4/KMnO4 (N = 57), paraquat, (N = 21), GPSH (N = 27)] recruited to a multicenter cohort study. We used area under the receiver operating characteristics curve (AUC-ROC) to quantify the extent of prediction of moderate to severe AKI (acute kidney injury network stage 2/3 (AKIN2/3)). Patients with AKIN2/3 showed increased levels of CytoC. Early high CytoC predicted AKIN2/3 in poisoning with KMnO4/H2C2O4 (AUC-ROC4-8h: 0.81), paraquat (AUC-ROC4-8h: 1.00), and GPSH (AUC-ROC4-8h: 0.91). 8-Isoprostane levels were not significantly elevated. Reduced sCn and increased sCr/sCn ratios were observed for 48 hours post KMnO4/H2C2O4 ingestion. Paraquat exhibited a similar pattern (N = 11), however only 3 were included in our study. Increased CytoC suggests there is mitochondrial injury coupled with energy depletion. The increased sCr within 24 hours could be due to increased conversion of cellular creatine to creatinine during the process of adenosine triphosphate (ATP) generation and then efflux from cells. Later increases of sCr are more likely to represent a true decrease in kidney function.


Language: en

Keywords

Oxidative stress; Acute kidney injury; Glyphosate; Oxalic acid; Paraquat; Potassium permanganate; surfactant herbicide

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print