SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Viellehner J, Potthast W. Sports Biomech. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Edinburgh University Press)

DOI

10.1080/14763141.2020.1797153

PMID

32942954

Abstract

The aim of this study was to understand if and how surface-induced vibrations and road bike damping affect short-term neuromuscular performance in cycling. Thirty cyclists (mass 75.9 ± 8.9 kg, height 1.82 ± 0.05 m, Vo2max 63.0 ± 6.8 ml/min/kg) performed steady-state and maximum effort tests with and without vibration exposure (front dropout: 44 Hz, 4.1 mm; rear dropout: 38 Hz, 3.5 mm) on a damped and a nondamped bike. Transmitted accelerations to the musculoskeletal system, activation of lower extremity muscles (gast. med., soleus, vast. med., rec. fem.) and upper body muscles (erec. spinae, deltoideus, tric. brachii), oxygen uptake, heart rate and crank power output were measured. The main findings indicate a transmission of vibration to the whole body, but since no major propulsive muscles increase their activation with vibration, the systemic energy demand increases only marginally with vibration. Damping reduces vibrations at the upper body, which indicates an increase in comfort, but has no effect on the vibration transfer to the lower extremities. Therefore, road bike damping does not affect neuromuscular response of the propulsive muscle groups and energy demand. Consequently, short-term power output does not increase with damping.


Language: en

Keywords

Cycling; performance; damping; neuromuscular; vibration

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print