SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Csönde G, Sekimoto Y, Kashiyama T. Sensors (Basel) 2020; 20(17): e4855.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s20174855

PMID

32867289

Abstract

Continually improving crowd counting neural networks have been developed in recent years. The accuracy of these networks has reached such high levels that further improvement is becoming very difficult. However, this high accuracy lacks deeper semantic information, such as social roles (e.g., student, company worker, or police officer) or location-based roles (e.g., pedestrian, tenant, or construction worker). Some of these can be learned from the same set of features as the human nature of an entity, whereas others require wider contextual information from the human surroundings. The primary end-goal of developing recognition software is to involve them in autonomous decision-making systems. Therefore, it must be foolproof, which is, it must have good semantic understanding of the input. In this study, we focus on counting pedestrians in helicopter footage and introduce a dataset created from helicopter videos for this purpose. We use semantic segmentation to extract the required additional contextual information from the surroundings of an entity. We demonstrate that it is possible to increase the pedestrian counting accuracy in this manner. Furthermore, we show that crowd counting and semantic segmentation can be simultaneously achieved, with comparable or even improved accuracy, by using the same crowd counting neural network for both tasks through hard parameter sharing. The presented method is generic and it can be applied to arbitrary crowd density estimation methods. A link to the dataset is available at the end of the paper.


Language: en

Keywords

computer vision; deep learning; image processing; crowd counting; helicopter footage; multitask learning; remote sensing; semantic segmentation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print