SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shirani-Bidabadi N, Mallipaddi N, Haleem K, Anderson M. Accid. Anal. Prev. 2020; 146: 105735.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.aap.2020.105735

PMID

32835954

Abstract

This study develops bicycle-vehicle safety performance functions (SPFs) for five facilities in the Highway Safety Manual (HSM). These are urban two-lane undivided segments (U2U), urban four-lane divided/undivided segments (U4DU), rural two-lane undivided segments (R2U), urban four-leg and three-leg signalized intersections (USG), and urban four-leg and three-leg stop-controlled intersections (UST). Two modeling techniques were explored, the Conway-Maxwell-Poisson (COM-Poisson) model (to accommodate bicycle-vehicle crash under-dispersion) and a machine learning technique, the multivariate adaptive regression splines (MARS). MARS is a non-black-box model and can effectively handle non-linear crash predictors and interactions. A total of 1,311 bicycle-vehicle crashes from 2011 through 2015 in Alabama were collected and their respective police reports were reviewed in details.

RESULTS from the SPFs for roadway segments using COM-Poisson showed that bicycle-vehicle crash frequencies were reduced along curved and downgrade/upgrade stretches and when having heavy traffic flow (along U2U segments). For urban signalized (USG) intersections, the absence of right-turn lanes on minor roads, the presence of bus stops, and the increase in the major road annual average daily traffic (AADT) were significant factors contributing to the increase in the number of bicycle-vehicle crashes. However, the presence of divided medians on major approaches was found to reduce bicycle-vehicle crashes at USG and UST intersections. MARS outperformed the corresponding COM-Poisson models for all five facilities based on mean absolute deviance (MAD), mean square prediction error (MSPE), and generalized R-square. MARS is recommended as a promising technique for effectively predicting bicycle-vehicle crashes on segments and intersections.


Language: en

Keywords

Safety Performance Functions; MARS; Bicycle-Vehicle Crashes; COM-Poisson; Conway-Maxwell-Poisson; Multivariate Adaptive Regression Splines

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print