SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rowe C, Wiesendanger K, Polet C, Kuppermann N, Aronoff S. J. Pediatr. X 2020; 3: e100026.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.ympdx.2020.100026

PMID

unavailable

Abstract

OBJECTIVE
To develop a simplified clinical prediction tool for identifying children with clinically important traumatic brain injuries (ciTBIs) after minor blunt head trauma by applying machine learning to the previously reported Pediatric Emergency Care Applied Research Network dataset.

Study design
The deidentified dataset consisted of 43 399 patients <18 years old who presented with blunt head trauma to 1 of 25 pediatric emergency departments between June 2004 and September 2006. We divided the dataset into derivation (training) and validation (testing) subsets; 4 machine learning algorithms were optimized using the training set. Fitted models used the test set to predict ciTBI and these predictions were compared statistically with the a priori (no information) rate.

Results
None of the 4 machine learning models was superior to the no information rate. Children without clinical evidence of a skull fracture and with Glasgow Coma Scale scores of 15 were at the lowest risk for ciTBIs (0.48%; 95% CI 0.42%-0.55%).

Conclusions
Machine learning algorithms were unable to produce a more accurate prediction tool for ciTBI among children with minor blunt head trauma beyond the absence of clinical evidence of skull fractures and having Glasgow Coma Scale scores of 15.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print