SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jin W, Chowdhury M, Salek MS, Khan SM, Gerard P. Accid. Anal. Prev. 2020; 145: e105671.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.aap.2020.105671

PMID

32768604

Abstract

By handling conflicting traffic movements and establishing dynamic coordination between intersections in real-time, the Adaptive Signal Control System (ASCS) can potentially improve the operation and safety of signalized intersections on a corridor. This study identifies the hierarchical effects of ASCS on the crash severity by exploring the heterogeneous effect of ASCS on the crash severity. Four different random-parameter ordered regression models (two ordered probit models, and two ordered logit models) are developed and compared. The analysis reveals that the random-parameter ordered probit and logit models (ROP and ROL) with observed heterogeneity perform better than the random-parameter ordered probit and logit models (RP and RL) without observed heterogeneity in terms of the Akaike information criteria and the goodness of fit of the model. The ROP model performs better than the ROL model in terms of classification model performance measures. The ROP model enables parameters (i.e., the coefficients of the explanatory variables) to vary as a function of explanatory variables as well as across observations, thus accounting for both observed (captured by available explanatory variables) and unobserved (not captured by available explanatory variables) heterogeneity. The analysis reveals that the presence of ASCS is associated with lower crash severity. In this study, observed heterogeneity of ASCS effects on the crash severity is captured by variables related to the intersection and corridor features. Other contributing factors besides ASCS, such as annual average daily traffic, speed limit, lighting, peak period, crash type (rear-end, angle), and pedestrian involvements, are also associated with the probability of crash severity. Unobserved heterogeneity of the effect of angle crash type on the crash severity is found to exist across the observations. The findings of this research have practical implications for establishing ASCS implementation guidelines in lowering the probability of higher crash severity.


Language: en

Keywords

Safety; Crash severity; Adaptive signal control system; Ordered regression model; Unobserved and observed heterogeneity

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print