SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Padarthy M, Sami M, Heyns E. Transp. Res. Rec. 2020; 2674(7): 585-595.

Copyright

(Copyright © 2020, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198120923989

PMID

unavailable

Abstract

One of the main challenges for road authorities is to maintain the quality of the road infrastructure. Road anomalies can have a significant impact on traffic flow, the condition of vehicles, and the comfort of occupants of vehicles. Strategies such as pavement management systems use pavement evaluation vehicles that are equipped with state-of-the-art devices to assist road authorities in identifying and repairing these anomalies. The quantity of data available is limited, however, by the limited availability and, therefore, coverage of these vehicles. To address this problem, several investigations have been conducted on the use of smartphones or equipping vehicles with additional sensors to identify the presence of road anomalies. This paper aims to add to this arsenal by using sensors already available in production vehicles to identify road anomalies. If production vehicles could be used to identify road anomalies, then road authorities would be equipped with an additional fleet of mobile sensors (vehicles traveling on a particular road) to receive initial insights into the presence of anomalies. This information could then be used to assist road authorities to deploy their staff and equipment more precisely at these locations, such that appropriate equipment reaches the right place at the right time. In this paper, an algorithm that uses lateral acceleration and individual wheel speed signals, which are commonly available vehicular variables, was developed to detect potholes using machine learning techniques. The results of the algorithm were validated with real life test scenarios.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print