SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sungmin O, Hou X, Orth R. Sci. Rep. 2020; 10(1): e11008.

Copyright

(Copyright © 2020, Nature Publishing Group)

DOI

10.1038/s41598-020-67530-4

PMID

32620812

Abstract

Wildfires can destroy property and vegetation, thereby threatening people's livelihoods and food security. Soil moisture and biomass are important determinants of wildfire hazard. Corresponding novel satellite-based observations therefore present an opportunity to better understand these disasters globally and across different climate regions. We sampled 9,840 large wildfire events from around the globe, between 2001 and 2018, along with respective surface soil moisture and biomass data. Using composites across fire events in similar climate regions, we show contrasting soil moisture anomalies in space and time preceding large wildfires. In arid regions, wetter-than-average soils facilitate sufficient biomass growth required to fuel large fires. In contrast, in humid regions, fires are typically preceded by dry soil moisture anomalies, which create suitable ignition conditions and flammability in an otherwise too wet environment. In both regions, soil moisture anomalies continuously decrease in the months prior to fire occurrence, often from above-normal to below-normal. These signals are most pronounced in sparsely populated areas with low human influence, and for larger fires. Resolving natural soil moisture-fire interactions supports fire modelling and facilitates improved fire predictions and early warning.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print