SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wolf MS, Rakkar J, Horvat CM, Simon DW, Kochanek PM, Clermont G, Clark RSB. Neurocrit. Care 2020; ePub(ePub): ePub.

Affiliation

Faculty Pavilion, Suite 2000, Brain Care Institute, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA. clarkrs@upmc.edu.

Copyright

(Copyright © 2020, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s12028-020-01004-3

PMID

32556856

PMCID

PMC7299131

Abstract

BACKGROUND AND AIMS: Intracranial compliance refers to the relationship between a change in intracranial volume and the resultant change in intracranial pressure (ICP). Measurement of compliance is useful in managing cardiovascular and respiratory failure; however, there are no contemporary means to assess intracranial compliance. Knowledge of intracranial compliance could complement ICP and cerebral perfusion pressure (CPP) monitoring in patients with severe traumatic brain injury (TBI) and may enable a proactive approach to ICP management. In this proof-of-concept study, we aimed to capitalize on the physiologic principles of intracranial compliance and vascular reactivity to CO2, and standard-of-care neurocritical care monitoring, to develop a method to assess dynamic intracranial compliance.

METHODS: Continuous ICP and end-tidal CO2 (ETCO2) data from children with severe TBI were collected after obtaining informed consent in this Institutional Review Board-approved study. An intracranial pressure-PCO2 Compliance Index (PCI) was derived by calculating the moment-to-moment correlation between change in ICP and change in ETCO2. As such, "good" compliance may be reflected by a lack of correlation between time-synched changes in ICP in response to changes in ETCO2, and "poor" compliance may be reflected by a positive correlation between changes in ICP in response to changes in ETCO2.

RESULTS: A total of 978 h of ICP and ETCO2 data were collected and analyzed from eight patients with severe TBI. Demographic and clinical characteristics included patient age 7.1 ± 5.8 years (mean ± SD); 6/8 male; initial Glasgow Coma Scale score 3 [3-7] (median [IQR]); 6/8 had decompressive surgery; 7.1 ± 1.4 ICP monitor days; ICU length of stay (LOS) 16.1 ± 6.8 days; hospital LOS 25.9 ± 8.4 days; and survival 100%. The mean PCI for all patients throughout the monitoring period was 0.18 ± 0.04, where mean ICP was 13.7 ± 2.1 mmHg. In this cohort, PCI was observed to be consistently above 0.18 by 12 h after monitor placement. Percent time spent with PCI thresholds > 0.1, 0.2, and 0.3 were 62% [24], 38% [14], and 23% [15], respectively. The percentage of time spent with an ICP threshold > 20 mmHg was 5.1% [14.6].

CONCLUSIONS: Indirect assessment of dynamic intracranial compliance in TBI patients using standard-of-care monitoring appears feasible and suggests a prolonged period of derangement out to 5 days post-injury. Further study is ongoing to determine if the PCI-a new physiologic index, complements utility of ICP and/or CPP in guiding management of patients with severe TBI.


Language: en

Keywords

CO2 reactivity; Cerebral blood volume; Head injury; Intracranial pressure; Pressure–volume index

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print