SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dieleman CM, Rogers BM, Potter S, Veraverbeke S, Johnstone JF, Laflamme J, Solvik K, Walker XJ, Mack MC, Turetsky MR. Glob. Chang. Biol. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, John Wiley and Sons)

DOI

10.1111/gcb.15158

PMID

32529727

Abstract

Boreal wildfires are increasing in intensity, extent, and frequency, potentially intensifying carbon emissions and transitioning the region from a globally significant carbon sink to a source. The productive southern boreal forests of central Canada already experience relatively high frequencies of fire, and as such may serve as an analog of future carbon dynamics for more northern forests. Fire-carbon dynamics in southern boreal systems are relatively understudied, with limited investigation into the drivers of pre-fire carbon stocks or subsequent combustion. As part of NASA's Arctic-Boreal Vulnerability Experiment, we sampled 79 stands (47 burned, 32 unburned) throughout central Saskatchewan to characterize above- and belowground carbon stocks and combustion rates in relation to historical land use, vegetation characteristics, and geophysical attributes. We found southern boreal forests emitted an average of 3.3 ± 1.1 kg C/m2 from field sites. The emissions from southern boreal stands varied as a function of stand age, fire weather conditions, ecozone, and soil moisture class. Sites affected by historical timber harvesting had greater combustion rates due to faster carbon stock recovery rates than sites recovering from wildfire events, indicating that different boreal forest land use practices can generate divergent carbon legacy effects. We estimate the 2015 fire season in Saskatchewan emitted a total of 36.3 ± 15.0 Tg C, emphasizing the importance of southern boreal fires for regional carbon budgets. Using the southern boreal as an analog, the northern boreal may undergo fundamental shifts in forest structure and carbon dynamics, becoming dominated by stands <70 years old that hold 2-7 kg C/m2 less than current mature northern boreal stands. Our latitudinal approach reinforces previous studies showing that northern boreal stands are at a high risk of holding less carbon under changing disturbance conditions.


Language: en

Keywords

land use; climate change; ecozone; harvesting; latitudinal gradient; soil moisture; stand age

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print