SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Speiser JL, Callahan KE, Houston DK, Fanning J, Gill TM, Guralnik JM, Newman AB, Pahor M, Rejeski WJ, Miller ME. J. Gerontol. A Biol. Sci. Med. Sci. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Gerontological Society of America)

DOI

10.1093/gerona/glaa138

PMID

32498077

Abstract

BACKGROUND: Advances in computational algorithms and the availability of large datasets with clinically relevant characteristics provide an opportunity to develop machine learning prediction models to aid in diagnosis, prognosis, and treatment of older adults. Some studies have employed machine learning methods for prediction modeling, but skepticism of these methods remains due to lack of reproducibility and difficulty understanding the complex algorithms that underlie models. We aim to provide an overview of two common machine learning methods: decision tree and random forest. We focus on these methods because they provide a high degree of interpretability.

METHODS: We discuss the underlying algorithms of decision tree and random forest methods and present a tutorial for developing prediction models for serious fall injury using data from the Lifestyle Interventions and Independence for Elders (LIFE) study.

RESULTS: Decision tree is a machine learning method that produces a model resembling a flow chart. Random forest consists of a collection of many decision trees whose results are aggregated. In the tutorial example, we discuss evaluation metrics and interpretation for these models. Illustrated using data from the LIFE study, prediction models for serious fall injury were moderate at best (area under the receiver operating curve of 0.54 for decision tree and 0.66 for random forest).

CONCLUSIONS: Machine learning methods offer an alternative to traditional approaches for modeling outcomes in aging, but their use should be justified and output should be carefully described. Models should be assessed by clinical experts to ensure compatibility with clinical practice.


Language: en

Keywords

random forest; decision support tool; decision tree; prediction modeling

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print